-
什么是傳輸門(模擬開關)
本應用筆記描述了輸電門的用途和基本操作。本文解釋了如何使用傳輸門快速隔離多個信號,同時對電路板面積的投資最少,并且這些關鍵信號的特性下降可以忽略不計。DS3690是示例器件。
2023-05-19
傳輸門 模擬開關
-
提升新能源車電驅方案中單管封裝的散熱性能
經典單管TO直插封裝有兩類TO-220和TO-247,其使逆變器系統并聯擴容靈活,器件成本優勢明顯,且標準封裝容易找替代品,廣泛應用于中小功率范圍。在單管電驅應用方案中可以覆蓋30kW到180kW功率范圍,最多需要6-8個單管的并聯來實現方案。
2023-05-19
新能源車 電驅方案 單管封裝
-
如何在 CFD 設計中利用網格維護幾何形狀并減少運行時間?
盡管計算機的處理能力不斷提升,但依然有必要提高數值仿真的效率。在 CFD 仿真中,求解的質量在很大程度上取決于網格劃分。網格間距如果不能求解流體變量的局部變化,就會引入離散化誤差。另一方面,如果網格過于精細,就會增加不必要的計算時間和工作量。網格元素類型和數據結構也會影響生成網格所...
2023-05-17
CFD 設計 幾何形狀
-
解析智能功率開關
功率器件可以在各種非正常工況下保護自己并報錯會大大提高功率器件自身的可靠性和整個系統的安全性。以下圖中英飛凌的智能高邊經典產品PROFET系列為例,它集成了診斷和保護功能(Protect)的功率器件(MOSFET),它可以對異常工況作出反應,并及時向控制單元匯報。尤其是在汽車級的應用中,汽車復雜的電...
2023-05-17
智能功率開關 英飛凌
-
智能電機驅動給汽車帶來的提升
隨著汽車系統中傳統的機械化設計被電子化設計逐漸取代,電機在汽車電子化系統中扮演的角色越來越重要。例如在汽車的動力系統中,由傳統的燃油發動機逐步發展為現在的有刷同步電機、感應電機,真正的實現了新能源車的動力革命;傳統的機械式汽車底盤也逐步發展成智能電子底盤,用來配合自動駕駛功能...
2023-05-16
智能電機驅動 汽車
-
OBD-II系統的ESD防護(上)
試想您在網上買了東西,一直盼著包裹早日送達。您每天望眼欲穿,可快遞員遲遲不來。這時候,使用手機或計算機上的跟蹤系統,就可以確切知道包裹何時送達。再假設您的孩子放學后被接到托管班,您想知道孩子是否已安全到達目的地,于是在手機上跟蹤孩子所坐的車輛,太方便了。
2023-05-16
車載診斷 ESD防護
-
功率MOS管損壞的典型
如果在漏極-源極間外加超出器件額定VDSS的電涌電壓,而且達到擊穿電壓V(BR)DSS (根據擊穿電流其值不同),并超出一定的能量后就發生破壞的現象。
2023-05-15
功率MOS管
-
Zeta拓撲電源原理及工作過程解析
使用Buck控制器加上一個驅動以及外圍電路,就可以實現Zeta電路,開關管和整流管的數量比較少就可以實現升降壓功能。
2023-05-15
Zeta拓撲電源 Buck控制器 整流管
-
CAN節點經常損壞?多半是少了浪涌抑制器
CAN總線在實際應用中,容易受到靜電浪涌的干擾。很多客戶出現CAN節點無法通信,主要原因是CAN收發器芯片損壞,靜電浪涌防護沒做好。本文就針對這一點進行講解。
2023-05-15
CAN節點 浪涌抑制器
- 薄膜電容使用指南:從安裝到維護的七大關鍵注意事項
- 薄膜電容在新能源領域的未來發展趨勢:技術革新與市場機遇
- 從噪聲抑制到安全隔離,隔離式精密信號鏈如何保障數據采集可靠性?
- 隔離式精密信號鏈在不同場景數據采集的選型指南與設計實踐
- 隔離式精密信號鏈的功耗優化:從器件選型到系統級策略
- GaN如何攻克精密信號鏈隔離難題?五大性能優勢與典型場景全揭秘
- 模擬芯片原理、應用場景及行業現狀全面解析
- 隔離式精密信號鏈定義、原理與應用全景解析
- 專為STM32WL33而生:意法半導體集成芯片破解遠距離無線通信難題
- 聚焦成渝雙城經濟圈:西部電博會測試測量專區引領產業升級
- 挑戰極限溫度:高溫IC設計的環境溫度與結溫攻防戰
- 模擬芯片原理、應用場景及行業現狀全面解析
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall