-
μV級精度保衛戰:信號鏈電源噪聲抑制架構全解,拒絕LSB丟失!
在精密測量、醫療儀器及工業傳感系統中,信號鏈的μV級精度直接決定系統性能上限。而電源噪聲,常以隱形殺手的姿態吞噬ADC/DAC的有效位數——當1mV電源紋波可導致12位ADC丟失4個LSB時,電源架構選型便成為精度保衛戰的核心戰場。本文從噪聲頻譜與拓撲本質出發,拆解LDO、開關電源及混合架構的噪聲基因,并通過多場景實測數據,揭示高精度信號鏈的電源設計法則。
2025-06-20
-
如何解決在開關模式電源中使用氮化鎵技術時面臨的挑戰?
在開關模式電源(SMPS)中使用氮化鎵(GaN)技術時,盡管其在高功率密度、高頻開關和低功耗方面具有顯著優勢,但也面臨一系列技術挑戰。
2025-06-12
-
不同拓撲結構中使用氮化鎵技術時面臨的挑戰有何差異?
氮化鎵(GaN)器件因其高開關頻率、低導通損耗的特性,正在快速滲透消費電子、汽車電驅和數據中心等領域。然而,不同拓撲結構對GaN器件的需求呈現顯著差異:例如快充領域的LLC諧振拓撲需要高頻率下的電磁干擾控制,而車載雙向逆變器更關注動態電阻與耐壓性能。本文將深入分析半橋拓撲、雙向逆變拓撲、多電平拓撲及汽車主驅模塊中的氮化鎵技術痛點,揭示材料特性與系統設計間的矛盾性關系。
2025-06-12
-
集成化柵極驅動IC對多電平拓撲電壓均衡的破解路徑
在新能源汽車主驅模塊(如800V平臺)中,多電平拓撲通過串聯開關器件實現高壓階梯化處理,但分立式驅動方案面臨兩大核心挑戰。
2025-06-12
-
多通道同步驅動技術中的死區時間納米級調控是如何具體實現的?
在電力電子系統中,多通道同步驅動的死區時間直接影響系統效率和安全性。傳統方案常面臨時序誤差累積(±10ns以上)、開關損耗高(占系統總損耗15%-25%)和模式切換不靈活等痛點。納米級死區調控技術通過硬件架構革新與智能算法協同,將控制精度提升至亞納秒級,為新能源汽車、高頻電源等場景提供關鍵技術支撐。本文將深入解析其實現路徑與產業突破方向。
2025-06-12
-
高頻時代的電源革命:GaN技術如何顛覆傳統開關電源架構?
在電力電子系統對能效和功率密度要求日益嚴苛的背景下,氮化鎵(GaN)技術已成為推動開關模式電源(SMPS)發展的核心動力。相較于傳統硅基器件,GaN憑借其3.4eV的寬禁帶特性、更高的電子遷移率(990-2000 cm2/V·s)及更低的導通電阻(RDS(ON)),可將開關頻率提升至兆赫級,同時減少30%以上的能量損耗。然而,其實際應用中仍面臨驅動設計、熱管理、電磁兼容性等挑戰。以半橋降壓轉換器為例,GaN開關的柵極電壓耐受值更低(通常<6V),且快速切換(dV/dt達100V/ns)易引發寄生振蕩和電磁干擾(EMI),這對電路布局和驅動控制提出了更高要求。
2025-06-11
-
車輛區域控制架構關鍵技術——趨勢篇
向軟件定義汽車 (SDV) 的轉型促使汽車制造商不斷創新,在區域控制器中集成受保護的半導體開關。電子保險絲和 SmartFET 可為負載、傳感器和執行器提供保護,從而提高功能安全性,更好地應對功能故障情況。不同于傳統的域架構,區域控制架構采用集中控制和計算的方式,將分散在各個 ECU 上的軟件統一交由強大的中央計算機處理,從而為下游的電子控制和配電提供了更高的靈活性。
2025-06-05
-
如何通過 LLC 串聯諧振轉換器優化LLC-SRC設計?
十幾年來,電源行業廣泛采用了圖 1 中所示的電感器-電感器-電容器 (LLC) 串聯諧振轉換器 (LLC-SRC) 作為低成本、高效率的隔離式功率級,其中包含兩個諧振電感器(兩個“L”:Lm 和 Lr)和一個諧振電容器(一個“C”:Cr)。LLC-SRC 器件具有軟開關特性,沒有復雜的控制方案。得益于軟開關特性,該器件支持使用額定電壓較低的元件,并可提高效率。該器件采用簡單的控制方案,即具有 50% 固定占空比的變頻調制方案,與相移全橋轉換器等用于其他軟開關拓撲的控制器相比,所需的控制器成本更低。
2025-05-21
-
工程師必看!從驅動到熱管理:MOSFET選型與應用實戰手冊
MOSFET因其獨特的性能優勢,已成為模擬電路與數字電路中不可或缺的元件,廣泛應用于消費電子、工業設備、智能手機及便攜式數碼產品中。其核心優勢體現在三個方面:驅動電路設計簡化,所需驅動電流遠低于BJT,可直接由CMOS或集電極開路TTL電路驅動;開關速度優異,無電荷存儲效應,支持高速工作;熱穩定性強,無二次擊穿風險,高溫環境下性能表現更穩定。這些特性使MOSFET在需要高可靠性、高效率的場景中表現尤為突出。
2025-05-15
-
功率器件新突破!氮化鎵實現單片集成雙向開關
氮化鎵(GaN)單片雙向開關正重新定義功率器件的電流控制范式。 傳統功率器件(如MOSFET或IGBT)僅支持單向主動導通,反向電流需依賴體二極管或外接抗并聯二極管實現第三象限傳導。這種被動式反向導通不僅缺乏門極控制能力,更因二極管壓降導致效率損失。為實現雙向可控傳導,工程師常采用背對背(B2B)拓撲級聯兩個器件,卻因此犧牲了功率密度并增加了系統復雜度。
2025-05-11
-
雙脈沖測試系統如何確保晶體管性能可比較性
在電源轉換器設計中,為確保電源晶體管的性能評估準確性,選擇合適的器件至關重要。理想情況下,功率半導體供應商提供的數據表應包含一致且可比較的動態參數。然而,在實際操作中,尤其是針對表征寬帶gap(WBG)功率晶體管的動態開關特性測試,實現使寄生蟲保持較小且從系統之間保持一致的挑戰。本文聚焦于設計一套標準化的雙脈沖測試(DPT)系統,旨在實現不同測試系統間動態特性結果的可關聯性。文中詳細闡述了在設計此類系統時需考慮的關鍵因素,包括如何最小化寄生參數影響及確保系統間測試條件的一致性。
2025-05-10
-
能效升級新引擎!拆解IGBT的三大技術優勢
在消費電子市場高速發展的當下,IGBT(絕緣柵雙極晶體管)已成為現代家電設備中不可或缺的核心器件。憑借其優異的開關特性、低導通損耗及出色的熱管理能力,IGBT技術正持續推動家電產品能效升級。安世半導體推出的650 V G3 IGBT平臺產品,通過性能優化與可靠性提升,為家電設備的高效化、節能化發展提供了關鍵解決方案。
2025-05-07
- 0.1微伏決定生死!儀表放大器如何成為醫療設備的“聽診器”
- 0.01%精度風暴!儀表放大器如何煉成工業自動化的“神經末梢”
- 如何選擇正確的工業自動化應用的儀表放大器?
- 從單管到并聯:SiC MOSFET功率擴展實戰指南
- 搶占大灣區C位!KAIFA GALA 2025AIoT方案征集收官在即,與頭部企業同臺競逐
- 破解工業電池充電器難題:升壓or圖騰柱?SiC PFC拓撲選擇策略
- μV級精度保衛戰:信號鏈電源噪聲抑制架構全解,拒絕LSB丟失!
- 如何設計高性能CCM反激式轉換器?中等功率隔離應用解析
- IOTE 2025上海物聯網展圓滿收官!AIoT+5G生態引爆智慧未來
- 2025西部電博會啟幕在即,中文域名“西部電博會.網址”正式上線
- 高壓BMS:電池儲能系統的安全守護者與壽命延長引擎
- 高精度低噪聲 or 大功率強驅動?儀表放大器與功率放大器選型指南
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall